Особенности ндс крепи нефтяных и газовых скважин

Опубликовано: 23.04.2024

Качественное цементирование обсадных колонн и разобщение продуктивных пластов является условием долговечной безаварийной эксплуатации скважин. Появляющиеся в начальной стадии эксплуатации скважин межпластовые перетоки и затрубные газопроявления являются результатом формирования негерметичного цементного кольца, что обусловлено различными причинами, основными из которых можно считать несоответствие свойств используемых тампонажных растворов и технологии их применения геолого-техническим условиям. Таким образом, задача обеспечения качественной изоляции затрубного пространства при цементировании скважин в настоящее время представляет весьма актуальную проблему.

Миграция газа в заколонном пространстве (ЗП) или переток газа между отдельными пластами сразу же после закачки в скважину цементного раствора представляет собой очень серьезную проблему, особенно для скважин, вскрывающих пласты с аномально-высоким пластовым давлением (АВПД), расположенных как на суше, так и в море.

Анализом и предотвращением причин возникновения заколонных флюидопроявлений занимаются отечественные и зарубежные исследователи долгие годы. Авторы 2 подразделяют межколонные газопроявления на две группы. К первой группе отнесены межколонные газопроявления, обусловленные непосредственным поступлением газа из продуктивных горизонтов через цементное кольцо и зазоры между цементным камнем и стенками скважины и обсадных колонн. Ко второй группе отнесены межколонные газопроявления, связанные с негерметичностью обсадных колонн.

Наибольший интерес представляют вопросы, относящиеся к первой группе, где основные факторы связаны с технологическими и физико-химическими процессами. Результаты исследований сводятся к следующему:

темпы водоотдачи цементного раствора и его расширение в наибольшей степени
влияют на снижение давления в цементном столбе;

выход газа из пласта может начаться задолго до начала схватывания цемента, если цементный раствор имеет большую водоотдачу;

сокращение объема цементного раствора за счет гидратации (контракция) происходит до начала схватывания цемента. Величина сокращения объема колеблется от 0,1 до 0,3%;

снижение давления в столбе цементного раствора имеет место даже при отсутствии водоотдачи цементного раствора выше залегания газового пласта;

расширяющиеся цементные составы, из которых может выделяться газ после
окончания цементирования, могут компенсировать снижение давления в столбе цементного раствора;

свободная вода непосредственно не влияет на утечки газа;

товарные цементы, которые расширяются после начала схватывания, не
предотвращают утечки газа.

Исследования, проведенные техасским университетом и фирмой «Экссон», показали, что миграция газа в ЗП при цементировании скважины обуславливается снижением
гидростатического давления столба тампонажного раствора во время начального периода его затвердевания [8].

Анализ существующих представлений показывает, что наиболее обоснованной
действующей силой флюидопроявления следует считать градиент давления, возникающий в период освоения и эксплуатации скважин за счет депрессии на непродуктивное насыщение флюидами пластов. Представления о путях продвижения пластового флюида связываются с наиболее слабыми участками в ЗП, сопротивление которых недостаточно для предотвращения движения флюидов и с выявлением причин формирования таких участков.

В настоящее время основными причинами формирования флюидопроявляющих
каналов в структуре твердеющего тампонажного раствора в начальный период ожидания
затвердевания цемента (ОЗЦ) называют процесс седиментации и напорное воздействие
пластового флюида.

Совпадение характерных зон седиментации и изменения проницаемости говорит об определяющей роли осаждения твердых частиц в процессе повышения проницаемости
цементного раствора (камня). Убедительным аргументом в пользу этого вывода служат
исследования, выявляющие влияние времени седиментационных процессов на
проницаемость цементного камня (рисунок 1). Экспериментами доказана возможность
формирования сплошных каналов в цементном камне при использовании седиментационно неустойчивых тампонажных растворов. Полученные данные подтверждаются
промысловыми наблюдениями.

Исследовано влияние состояния поверхности стенок скважины и колонны на
образование флюидопроводящих каналов. Вопрос изучался на специальной установке,
имитирующей скважинные условия. Установка для определения пути движения газа по
заколонному пространству через незатвердевший цементный раствор (рисунок 2) состоит из компрессора (1), модели обсаженной скважины (2), колонной головки (3) и манометра (4).

РИС. 1. Влияние времени седиментации на проницаемость цементного камня

РИС. 2. Схема установки для изучения образования флюидопроводящих каналов
в тампонажном растворе

Установлено следующее:

степень взаимодействия седиментирующего тела с вмещающей средой снижается с уменьшением шероховатости поверхности среды;

вес твердой составляющей раствора при зависании в большей степени передается на ту поверхность, с которой она больше взаимодействует при седиментации;

зависание данного вида раствора происходит тем раньше, чем в большей степени на контактных поверхностях проявляются структурно-механические свойства скелетной
решетки.

Проведенная научно-исследовательская работа нашла применение при разработке предложений по предупреждению некачественного крепления наклонно-направленных скважин одного из газовых месторождений Краснодарского края. Разрез скважин имеет
особенности, свойственные разрезам месторождений с АВПД:

- в нижней зоне имеется залежь, приуроченная к поровым коллекторам с АВПД;

- средняя зона представляет собой мощную (тысячи метров) толщу-покрышку,
сложенную глинами с маломощными, имеющими небольшое простирание, прослоями песчаников и алевролитов;

- верхняя зона сложена чередованием коллекторов и неколлекторов, она доступна для бокового и нисходящего движения вод; для этой зоны характерны нормальные давления флюидов.

Пример выделения зон АВПД по данным бокового каротажа в скважине данного
месторождения приведен на рисунке 3.

На основании анализа промысловых материалов сделан следующий вывод: причиной некачественного цементирования эксплуатационной колонны в скважине с появлением
после ОЗЦ заколонных перетоков является геологический фактор, а именно: пересечение скважиной пласта, относящегося к линзовидному нефтегазоводонасыщенному телу с
экстремальным градиентом порового давления, что не было учтено при цементировании скважины. Это привело к образованию флюидопроводящих каналов в цементном камне из-за несоответствия параметров применяемого тампонажного раствора требуемому значению.

Анализ тампонажного раствора для цементирования эксплуатационной колонны в данной скважине с учетом горно-геологических условий показал возможные изменения самого процесса формирования цементного камня в заколонном пространстве. Произошедшие в цементном камне в результате этого изменения могут быть оценены как влияние геологических и физико-химических факторов на качество крепи скважины.

Физико-химические факторы: седиментационное каналообразование; суффозия;
высокая водоотдача цементного раствора; наличие глинистой корки в зоне контакта с
тампонажным раствором; коагуляция тампонажных растворов в результате применения для

РИС. 3. Пример выделения зон АВПД по данным бокового каротажа в наклонно-направленной скважине рассматриваемого месторождения

их обработки химически несовместимых реагентов; повышенная проницаемость цементного камня; коррозия при воздействии агрессивных пластовых флюидов или пластовых вод не имеют места за исключением возможного проявления контракционного эффекта при твердении тампонажного раствора с образованием пристенного слоя воды в зоне контакта
«колонна – цементный камень».

Кроме того, на образование заколонных проявлений влияет содержание газа в
буровом растворе.

Особенностью технологии цементирования в геолого-технических условиях скважин данной площади являются повышенные требования к соблюдению программы цементирования, выдерживанию необходимых технологических свойств тампонажного раствора в интервале открытого ствола и в межколонном пространстве. При кратковременности процесса
цементирования кажущиеся незначительными отклонения режимов наземных и внутрискважинных работ от рекомендуемых могут оказать отрицательное влияние на качество цементирования скважин.

Для предотвращения заколонных перетоков и улучшения качества
крепления эксплуатационной колонны рекомендуется выполнение следующих мероприятий в период цементирования:

1. Буровой раствор дегазировать по всему объему, в течение 1,5 циклов циркуляции контролировать соответствие параметров раствора проектным.

2. В технологическую оснастку эксплуатационной колонны включить центраторы и турбулизаторы.

3. Провести цементирование эксплуатационной колонны в одну ступень путем порционной закачки двух пачек тампонажного раствора.

4. В целях устранения контракционного эффекта применяемый для цементирования эксплуатационной колонны тампонажный материал типа ЦТТУ I-160 может быть модифицирован введением расширяющей добавки на основе оксида магния. Ее количество определяется экспериментально с учетом термобарических условий скважины.

5. Использованный цемент и реагенты для обработки тампонажного раствора по
термостойкости должны соответствовать условиям цементирования эксплуатационной
колонны. Для обработки тампонажного раствора использованы реагенты: понизитель
фильтрации и регулятор реологических свойств, пластификатор, замедлитель сроков
схватывания, термостабилизатор, пеногаситель.

6. При подборе рецептур тампонажных растворов, исходить из того, что они должны обладать рядом специфических свойств:

контракционный эффект тампонажного раствора при затвердении его в камень
должен быть пониженным;

седиментационная устойчивость тампонажных растворов должна быть высокой;
водоотстой не должен превышать 1–1,5%, а материалы, используемые для приготовления тампонажного раствора, должны давать однородные по плотности смеси;

сроки схватывания тампонажных растворов следует подбирать, исходя из сроков начала загустевания смесей при забойных динамических температурных условиях и давлениях; время загустевания должно на 25% превышать время, необходимое для проведения всей операции цементирования, но не более чем на 30–40 мин;

тампонажные растворы должны иметь повышенные реологические характеристики (максимально допустимую динамическую вязкость и статическое напряжение сдвига), обеспечивающие, однако, успешное их транспортирование в интервал цеменирования;

водоотдача тампонажного раствора, особенно в случае очистки стенок скважины от глинистой корки, должна быть минимальной в конкретных условиях применения;

при выборе тампонажных материалов и реагентов предпочтение отдается тем,
которые обеспечивают необходимое время между началом и концом схватывания;

химические реагенты для обработки тампонажных растворов следует выбирать также из условия максимальной вязкости жидкости затворения, плотность воды затворения желательно иметь повышенную, для чего рекомендуется растворять в ней
поваренную или другие соли.

Таким образом, качество крепления скважин определяется как комплексом технологических мероприятий в процессе цементирования, так и физико-химическими свойствами применяемых буровых и тампонажных растворов. Несоответствие указанных факторов горно-геологическим условиям скважин приводит к разного рода осложнениям, наиболее существенным из которых в плане обеспечения надежного изоляционного комплекса скважины являются заколонные флюидопроявления.

Предложенные в данной работе мероприятия могут быть применены при креплении скважин на месторождениях и ПХГ с учетом индивидуальной проработки
в соответствии с конкретными горно-геологическими условиями.

Булатов А.И. Газопроявления в скважинах и борьба с ними [Текст] / А.И. Булатов, В.И. Рябченко, И.Я. Сибирко [и др.]. – М. : Недра, 2009. – С. 63 – 144.

Егорова Е.В. Возможности математического моделирования механизмов миграции газа в заколонном пространстве нефтяных и газовых скважин [Текст] / НТЖ Геология, география и глобальная энергия. – 2014. - № 3 (54).

Малеванский, В.Д. Открытые газовые фонтаны и борьба с ними [Текст] /
В.Д. Малеванский. – М. : Гостоптехиздат, 1993. – С. 148.

Линевский А.А. К вопросу борьбы с обводнением скважин [Текст] /
А.А. Линевский // Азерб. нефтяное хозяйство. – Баку, 1990. № 4. – С. 12.

Мариампольский Н.А. Промывка и разобщение пластов в глубоких скважинах [Текст] / Н.А. Мариампольский, В.М. Муняев. – М.: Гостоптехиздат, 1992. – С. 124.

Булатов А.И. О природе межтрубных газо–, водо– и нефтепроявлений [Текст] / А.И. Булатов // Газовая промышленность. – М., – 2003. – № 12. – С. 24.

Мамаджанов У.Д. Затрубные проявления газа [Текст] / У.Д. Мамаджанов,
В.Е. Халфин // Нефтяное хозяйство. – М., – 1996. – № 9. – С. 22.

Левайн Д.К. Предотвращение миграции газа в затрубном пространстве цементируемой скважины [Текст] / Д.К. Левайн, Э.У. Томас, Х.П. Безнер [и др.] // Нефть, газ и нефтехимия за рубежом. – М., 2008. – № 10. – С. 8 – 17.

Энергия пласта также играет немаловажную роль в выборе способа эксплуатации скважины, поэтому нефтяные и газовые продукты могут быть извлечены посредством фонтанного, насосного или газлифтного способа эксплуатации. Все эти разновидности способов известны под общим наименованием – механизированная добыча полезных ископаемых (нефти и газа).

Фонтанный способ

фонтанная арматура

Данный способ эксплуатации нефтяной скважины подразумевает поднятие жидкостей от забоя наверх по всей скважине, стимулятором чего будет только энергия нефтяных пластов. К преимуществам такого способа относится его высокая экономичность, поскольку подъем происходит естественным путем и не требует дополнительной траты сил и времени на это. Особое оборудование при этом способе эксплуатации также не требуется, и можно сэкономить как на его стоимости, так и на техническом обслуживании. Для обустройства фонтанирующей скважины потребуется головка для колонны, арматуры и линия выкидного типа из наземной техники, а также сама колонна из подземной. Трубы НКТ опускаются до верхних отверстий, образованных перфорацией. Трубы необходимы для обеспечения поднятия жидкости наверх по скважине, а также ряда других работ:

  • Регулировка режима функционирования.
  • Обеспечение работ по изучению скважины.
  • Устранение отложений смолы и парафинов.
  • Технологические мероприятия.
  • Защита скважинной колонны от воздействия коррозии.
  • Устранение пробок из песчаного материала.
  • Процесс глушения скважины, который проводится перед проведением ремонтных работ в стволе.
  • Защита от высокого давления и его перепадов.

Газлифтный способ

Существует две разновидности газлифтного способа эксплуатации нефтяной скважины: с компрессорами и без них. К плюсам такого способа можно отнести следующие качества:

  • Техника для работы находится над землей, и ее проще обслуживать и проводить по мере надобности ремонтные работы.
  • Конструкция техники достаточно проста в эксплуатации.
  • Подъем жидкости можно производить в большом размере, и это не зависит от глубины ствола или ширины колонны.
  • Дебит нефтяного продукта можно контролировать и задавать самостоятельно, для чего потребуется менять объем газа для подачи в скважину.
  • С помощью газлифтового способа эксплуатации можно проводить эксплуатацию нефтяных или газовых скважин, которые были залиты водой или оказались пробурены в слоях с высоким содержанием песка.
  • Исследовательские мероприятия в скважинах проводятся быстрее и проще.
Конечно, данный способ эксплуатации нефтяных и газовых скважин имеет и ряд недочетов. Так, в процессе эксплуатации требуется регулярно менять трубы НКТ, подъемник, эксплуатируемый в работе, имеет невысокий коэффициент полезного действия. Кроме того, создание компрессорных систем обходится недешево, а на тонну добываемых ископаемых приходятся высокие затраты электричества.

Насосная эксплуатация скважин

  • Штанговое глубинное оборудование.
  • Центробежный насос с электроприводом.
  • Погружной штанговый либо насос с электроприводом.
  • Диафрагменное устройство.

Особенности эксплуатации с помощью штангового насоса

  • Невысокая подача.
  • Ограничение по спуску оборудования.
  • Ограничение по углу уклона ствола скважины.
При этом способе эксплуатации конструкция простого насоса состоит из цилиндра и плунжера с клапаном по типу шара-седла, благодаря которому обеспечивается подъем жидкости и исключается ее течение вниз. Также в конструкции может быть всасываюший клапан – он установлен ниже цилиндра. Штанговый насос работает посредством передвижений плунжера, на который воздействует привод. В насосе проходит верхняя штанга, она прикреплена к головке балансировочного элемента. Ключевые части штангового насоса:

  • Рама.
  • Четырехгранная пирамидообразная стойка.
  • Балансировочный элемент.
  • Траверса.
  • Редуктор с противовесными элементами.
  • Салазка поворотного типа.
Штанговый насос может быть вставного типа или невставного. Первые опускаются в ствол скважины в уже готовом виде, а до того по НКТ вниз погружается замок. Для замены оборудования не нужно несколько раз спускать или поднимать трубы. Что касается невставных разновидностей, то их можно спустить в наполовину готовом виде. Если такой насос требуется отремонтировать или поменять, нужно поднимать его по частям: сначала поднимается плунжер, а затем НКТ. Оба вида имеют и плюсы, и минусы, и выбор должен происходить с учетом конкретных условий предстоящей эксплуатации.

Особенности эксплуатации с помощью центробежного насоса с электроприводом

устройство погружного центробежного агрегата.jpg

Центробежный насос с электрическим приводом – устройство, которое распространено не так хорошо, как предыдущая разновидность, однако отличается внушительными показателями по количеству получаемой нефти и газа. Свыше 80% общего объема добычи нефти и газа по стране приходится именно на скважины с таким оборудованием. Такой насос представляет собой удлиненную конструкцию небольшого диаметра, которая способна функционировать в агрессивных средах. В состав насоса входит погружной аппарат, линия кабеля, НКТ, оборудование, которое устанавливается для устья, а также наземная техника для управления.

К ключевым узлам относятся следующие элементы:

  • Сам насос, который состоит из нескольких секций и ступеней, а также колес и стальной трубы.
  • Электрический мотор погружного типа, который заполняется маслом.
  • Защита от воздействия влажности: она находится между двумя предыдущими элементами, защищая электромотор и передавая вращательный момент на насос.
  • Кабель для подачи электричества от подстанции. Его структура должна быть защищена бронированным слоем, на земле до уровня спуска его сечение должно иметь круглую форму, а от погружного элемента – плоскую.
К дополнительному оборудованию, используемому в этом случае для эксплуатации нефтяных и газовых скважин, относятся следующие элементы:

  • Газовый сепаратор, который эксплуатируется с целью уменьшить объем поступающих газов в насосное оборудование. В случае, если понижать этот показатель нужды нет, то можно применять вместо сепаратора обычный модуль для подачи жидкости в насос.
  • Система термического типа с манометром (ТМС). Она сочетает функции измерения температурного режима и показателей давления внутри среды, в которой в настоящее время находится электронасос.

Кроме указанных элементов, колонна труб НКТ должна быть оснащена парой клапанов – сливным и обратного хода. Они установлены над насосом. Клапан обратного хода применяется в системе насоса для подачи жидкости в НКТ перед началом функционирования насосной станции. Этот клапан также не дает жидкости пролиться вниз из-за высокого давления. Что касается сливного клапана, то этот элемент устанавливается над предыдущим и применяется для слива жидкостей, который необходимо осуществить перед поднятием наверх оборудования.

Достоинства электрических центробежных насосов достаточно обширны и выделяют их по сравнению с глубинными аналогами штангового типа:

  • Легкость конструкции наземной техники, а также упрощенная схема ее функционирования.
  • Возможность откачивать большие объемы жидкости из ствола нефтяной или газовой скважины.
  • Возможность успешной эксплуатации на большой глубине (более 3 км).
  • Длительное время эксплуатации и минимальные нужды в ремонте, а также долгие промежутки действия между плановыми ремонтными работами.
  • Исследования внутри нефтяной и газовой скважины могут быть осуществлены без поднятия оборудования на поверхность.
  • Повышенная легкость процесса удаления парафиновых отложений, которые оседают на стенках НКТ.

Эксплуатация электрических центробежных насосов погружного типа возможно в скважинах, которые имеют определенный угол наклона, а также горизонтальное строение. Кроме того, они могут эксплуатироваться в скважинах с высокой обводненностью, в скважине с высоким содержанием брома в воде, а также для откачки растворов на основе кислот и солей. На современном рынке существуют разновидности, которые могут функционировать в одной скважине на разных уровнях с обсадными колоннами. В ряде случаев центробежные погружные насосы могут эксплуатироваться и для откачки воды из пластов горной породы, чтобы поддержать нужный уровень давления в них. Таким образом, спектр эксплуатации электрических насосов погружного типа для обеспечения работы скважины представляет собой наиболее широкую область, и оборудование данного вида может эксплуатироваться наиболее эффективно.

На сегодняшний день это главные природные ресурсы, которые нужны для полноценной жизни человечества. Нефть играет особую роль в топливно-энергетическом балансе, из нее изготавливают моторные топлива, растворители, пластмассу, моющие средства и многое другое. Газ в основном служит источником отопления, горючего для приготовления пищи, топливом для машин и сырьем для изготовления различных органических веществ. Именно поэтому их добыча стала главной отраслью в мире. Для того чтобы добыть эти ископаемые, располагающихся глубоко под землей, нужна нефтяная газовая скважина.

1 - обсадные трубы;

2 - цементный камень;

4 - перфорация в обсадной трубе ицементном камне;

III - промежуточная колонна;

IV - эксплуатационная колонна.

Что это такое?

Скважиной называют цилиндрическое отверстие в земле с укрепленными стенками почвы специальным раствором, куда человек не имеет доступа. Длина колеблется от нескольких метров, до нескольких километров, в зависимости от глубины залежей полезных ископаемых.

Строительство газовой скважины – это процесс создания горной выработки в земле. Для качественного процесса необходимы мощные буровые установки. Сегодня половина буровых установок работает на дизельном приводе. Они очень удобны в применении при отсутствии электроэнергии. Мощность их постоянно совершенствуется производителями. Надо помнить, что процесс разрушения горных пород высокотехнологичен, который требует высококачественного оборудования и квалифицированных специалистов.

Скважина и ее составляющие

Что такое и чем отличается от шахт и колодцев? В шахты или колодцы люди при необходимости могут спускаться, а вот в скважину они доступа иметь не будут. Помимо этого, длина имеет больший размер чем диаметр. Из вышеперечисленного можно сделать вывод, что скважина – это горная выработка цилиндрической формы без доступа в нее людей.


Нефтяная газовая скважина состоит из устья – это верхняя часть ее, ствол – это стенки и нижней частью является забой. Сама конструкция состоит из нескольких частей. Этими частями являются направляющие, кондуктора и эксплуатационные колонны. Бурение нефтегазовой скважины должно выполняться качественно, чтобы слои почвы не размывались при дальнейшей эксплуатации. Поэтому после устройства направляющей колонны, пространство между почвой и стенкой трубы тщательно цементируют. Это особенно важно, ведь через верхние слои почвы проходят активные, пресные воды. Следующий процесс заключается в устройстве кондуктора. Это спуск колонн до еще большей глубины и опять же цементирование пространства между ними и почвой. Затем все эти операции заканчивают спуском эксплуатационной колонны до самого забоя и вновь все пространство от низа до устья цементируется. Это обеспечит хорошую защиту от расслаивания слоев почвы и грунтовых вод.

Типы горных выработок

Строительство нефтегазовых скважин подразделяется на:

  • Горизонтальную
  • Вертикальную
  • Наклонную
  • Многоствольную
  • Многозабойную

Классификация по назначению

У каждой есть свое назначение, ниже рассмотрим на какие категории они делятся:

  • поисковые
  • разведочные
  • эксплуатационные

Самые распространенные – вертикальные. При их устройстве угол наклона от вертикали не превышает 5 градусов. В случае если превышает - то называется уже наклонной. Горизонтальная имеет угол уклона от 80 до 90 градусов от вертикали, но так, как бурить под таким наклоном нет смысла, пробивают обычную скважину или наклонную, а затем уже по необходимой траектории пускают сам ствол. Проектирование подразумевает использование многоствольных и многозабойных конструкций. Разница их состоит в том, что многоствольная имеет несколько стволов, которые разветвляются из точки выше продуктивного слоя почвы. А многозабойная имеет несколько забоев, при этом точка разветвления ниже.


Бурение газовой скважины

Не обойдется без разведочной, ведь она позволяет уточнить запасы полезных ископаемых и собрать данные для составления проекта по разработке месторождения.

Самой важной частью газодобывающих работ является именно эксплуатационная "яма", ведь именно с помощью нее и происходит этот магический процесс добычи нефти и газа. Эксплуатационную, в свою очередь, можно разделить на несколько подтипов, таких как:

  • Добывающие основные
  • Нагнетательные
  • Резервные
  • Оценочные
  • Контрольные
  • Специального назначения
  • Дублеры

Все они играют огромную роль в этом комплексе работ по добыче газа. Первые предназначены непосредственно для добычи газа. Нагнетательные – для поддержания необходимого давления в продуктивных пластах. Резервные - используются для поддержки основного фонда, когда пласт неоднороден. Оценочные и контрольные служат для наблюдения за изменениями давления в пластах, его насыщенности и уточнения его границ. Специального назначения необходимы для сбора технической воды и устранения промысловых вод. А дублеры необходимы на случай износа основных добывающих и нагнетательных.

Способы бурения

Специалисты выделяют несколько методов, с помощью которых проводится бурение на нефть.

  • роторное – является одним из наиболее часто используемых методов бурения. Вглубь породы проходит долото, которое вращается одновременно с буровыми трубами. Скорость роторного бурения непосредственно зависит от прочности пород и показателя их сопротивляемости. Популярность данного метода обусловлена, тем, что есть возможность настраивать величину курящего момента в зависимости от прочности и плотности пород и почв. Кроме этого роторное бурение способно выдерживать довольно большие нагрузки при длительном выполнении рабочего процесса;
  • турбинное – основное отличие данного метода от роторного заключается в использовании долота, которое работает в паре с турбиной турбинного бура. Процесс вращения долота и бура обеспечивается за счет давления силы воды, которая двигается в определенном направлении между статором и ротором;
  • винтовое – рабочий агрегат, с помощью которого осуществляется винтовое бурение на нефть, состоит из множества механических винтов, которые приводят в движение буровое долото. На данный момент винтовой метод используется редко.

Его этапы

Современная промышленность использует несколько видов бурения, но все они состоят из таких основных этапов:

  • Проходка бурового ствола. Подразделяется на процесс углубления скважины и очистка от отработанных пород. Эти операции проходят параллельно друг другу и тесно связаны между собой.
  • Разделение пластов
  • Освоение буровой скважины
  • Ее дальнейшая эксплуатация

Важно отметить, что бурение нефтяных и газовых скважин может быть осуществлено только при строжайшем соблюдении всех правил и требований. И это вовсе не удивительно, ведь работать приходится с достаточно опасным и чувствительным материалом, добыча которого в любом случае требует грамотного подхода. И, чтобы разобраться во всех аспектах работы с таковым, необходимо в первую очередь рассмотреть все основы данного дела и его составляющих.

Так, скважиной называют горную выработку, которая создается без необходимости доступа внутрь человека и имеет цилиндрическую форму – ее длина многократно превышает диаметр. Начало скважины именуется устьем, поверхность цилиндрической колонны – стволом или стенкой, дно же объекта именуется забоем.

Длина объекта отмеряется от устья до забоя, глубина же – проекцией оси на вертикаль. Начальный диаметр такого объекта на максимуме не превышает 900 мм, конечный же диаметр в редких случаях оказывается меньше 165 мм – такова специфика процесса, именуемого бурение нефтяных и газовых скважин, и его особенностей.

Особенности бурения нефтяных и газовых скважин

Создание скважин как отдельный процесс состоит по большей части из бурения, а оно же, в свою очередь, имеет в основе такие операции:

  • Процесс углубления при разрушении буровым инструментом горных пород,
  • Удаление из скважины измельченной породы,
  • Укрепление ствола обсадными колоннами по мере углубления шахты,
  • Выполнение геолого-геофизических работ для поиска продуктивных горизонтов,
  • Цементирование эксплуатационной колонны.

Классификация нефтяных и газовых скважин

Известно, что необходимые материалы, которые планируется добывать, могут залегать на разной глубине. И потому бурение может также выполняться на разную глубину, и при этом, если речь идет о глубине до 1500 метров, бурение считается мелким, до 4500 – средним, до 6000 – глубоким.

На сегодняшний день бурение нефтяных и газовых скважин осуществляется на сверхглубокие горизонты, глубже 6000 метров – в этом отношении очень показательна Кольская скважина, глубина которой составляет 12650 метров.

Если же рассматривать способы бурения, ориентируясь по методу разрушения горных пород, то здесь можно привести в пример механические методы, например вращательные, которые реализуются при использовании электробура и забойных двигателей винтового типа.

Существуют также и ударные методы. А еще используют немеханические методики, среди которых можно отметить электроимпульсные, взрывные, электрические, гидравлические и прочие. Все они используются не слишком широко.

Работы при бурении на нефть или газ

В классическом варианте при бурении на нефть или газ буровые долота используют для разрушения породы, а потоки промывочной жидкости постоянно очищают забой. В редких случаях для продува используется рабочий реагент газообразного типа.

Бурение в любом случае выполняется вертикально, наклонное бурение применяется только при необходимости, также применяется кустовое, наклонно-направленное, двуствольное или многозабойное бурение.

Углубление скважин выполняют при отборе керна или без такового, первый вариант используется при работе по периферии, а второй – по всей площади. Если керн отбирается, его изучают на предмет пройденных слоев породы, поднимая периодически на поверхность.

Бурение на нефть и газ выполняется сегодня как на суше, так и на море, и реализуются такие работы при использовании специальных буровых установок, обеспечивающих вращательное бурение при помощи специализированных бурильных труб, которые соединяются муфтово-замковыми резьбовыми соединениями.

Также порой применяются непрерывные гибкие трубы, которые наматываются на барабаны и могут иметь длину порядка 5 тыс. метров и более.

Таким образом, подобные работы никак нельзя назвать простыми – они весьма специфичны и сложны, и особый акцент здесь стоит сделать на новые технологии, изучение которых может оказаться непростой задачей даже для профессионалов в данной отрасли.

Новые технологии бурения нефтяных и газовых скважин на выставке

Обмен информацией и изучение новинок может обеспечить оптимальный прогресс, и потому оставлять в стороне такую необходимость просто нельзя.

Если вы решили приобщиться к современным достижениям и окунуться в профессиональную среду – именно для этой цели проводятся профессиональные мероприятия, в одном из которых вам определенно стоит принять участие. Речь идет о выставках, которые ежегодно проходят в ЦВК «Экспоцентр» и собирают в дни открытия сотни и тысячи специалистов данного направления.

На ежегодной выставке «Нефтегаз» можно с легкостью получить доступ к новым разработкам, изучить передовые технологии (например, технологии бурения нефтяных и газовых скважин), увидеть современное оборудование и при этом обзавестись полезными связями в необходимо объеме, найти клиентов и партнеров.

Подобные возможности не стоит упускать, ведь они предоставляются не так уж часто и при правильном подходе могут обеспечить значительный прогресс!

Несмотря на развитие альтернативных источников энергии человечество пока не в состоянии обеспечить себя на все 100% «чистой энергией», по-прежнему доля нефти и газа занимает ведущее место в объеме самых востребованных энергоносителей. Именно поэтому сегодня бурение нефтяных и газовых скважин остается одной из самых важных задач обеспечения энергетической безопасности многих стран.

Определение и назначение скважин

Добыча газа и нефти, как и ранее осуществляется путем разведки, строительства и введения в эксплуатацию нефте- газоносных месторождений. Основным объектом в добыче этих полезных ископаемых остаются скважины – искусственные сооружения, пробуренные с поверхности или шахтного забоя дающие доступ к внутренним слоям земли. Бурение нефтяных и газовых скважин осуществляется на разных геологических участках и на различную глубину. По глубине различают:

  • Скважины малой глубины – до 1,5 км;
  • Средней глубины – до 4,5 км;
  • Углубленные – до 6,0 км;
  • Сверхглубокие – свыше 6,0 км

Справка: самой глубокой скважиной на Земле считается научно-исследовательская скважина Кольская сверхглубокая глубиной 12 226 метров расположенная на Кольском полуострове.

Технология бурения нефтяных и газовых скважин предусматривает несколько этапов бурения, различающиеся по назначению, используемой технологии и способу постройки.

По целевому назначению скважины бывают:

  • Разведывательные – их бурят самое большое количество, обычно они достигают глубины 1,0-2,0 км. Цель бурения – проведение разведки горных пластов, определение границ месторождений.
  • Промысловые – самые большие по размаху и объему вложений сооружения. Их задача осуществление добычи нефти и газа с земных недр;
  • Вспомогательные – технологически необходимые объекты, которые участвуют в добыче в качестве обязательных элементов, через которые закачиваются в пласты земли вода для вытеснения полезных ископаемых;
  • Научно-исследовательские скважины участвуют в изучении недр, с помощью них учеными делаются прогнозы состояния недр, продуктивности месторождений и отрабатываются новые способы бурения нефтяных и газовых скважин.

Различаются скважины и по месту расположения – наземные, подземные, скважины на морском шельфе. И по наклону относительно земной поверхности – вертикальные, наклонные, горизонтальные и скважины сложной траектории.

Буровое оборудование

Бурение нефтяных и газовых скважин осуществляется при помощи бурового оборудования. В состав оборудования входят:

  • Блокбуровой вышки;
  • Насосное оборудование;
  • Генераторы и система электропитания;
  • Система приготовления бурового раствора;
  • Вспомогательное оборудование.

В состав оборудования, которое непосредственно участвует в бурении горных пород входит:

Бурение нефтяных и газовых скважин

  • Ротор;
  • Вертлюг;
  • Талевый механизм;
  • Буровая лебедка;
  • Подающие насосы;
  • Насосы откачки бурового раствора;
  • Долото;
  • Буровые штанги.
Для бурения нефтяных и газовых скважин понадобиться буровая лебедка

Основным элементом бурового оборудования является вышка – специальная конструкция, обеспечивающая весь процесс бурения. Высота вышки зависит от назначения бурения, сегодня применяются мобильные буровые установки для бурения скважин до 100 метров, вышки высотой 18, 43 и 57 метров.

Геологические исследования и монтаж буровых установок

Основой для определения границ месторождений нефти и газа, выступают геологические исследования. На основании полевых геологических работ определяются районы наиболее вероятного залегания месторождений полезных ископаемых. Для точного определения всех параметров необходимых для промышленной разработки осуществляется пробное геологическое бурение.

Для размещения оборудования буровой вышки расчищается площадка, прокладывается временная дорога для подвоза оборудования. В случае если это отдаленный участок расчищается площадка для посадки вертолетов и разведываются пути подхода к рекам, по которым есть возможность осуществить подвоз оборудования.

На участке работ после подвоза всего оборудования определяются места размещения основных компонентов буровой и место установки самой скважины.

Устанавливается платформа вышки, монтируется буровой стол и возводится сама буровая вышка. На площадке размещаются системы жизнеобеспечения вышки – компрессорные, насосные и фильтровальные станции. Устанавливаются цистерны для технической воды, горючего, буровой смеси, емкости для отстоя и фильтрации воды, поднятой с дна забоя.

Размещаются жилые и административные помещения, площадки для автомобилей и складов.

После того как будет развернуто все оборудование происходит проверка и получение прав на проведение разведывательного бурения.

Процесс бурения разведывательной скважины ничем не отличается от процесса работ на промысловой, за исключением того, что обсадка шахты делается не железобетонными или металлическими трубами, а металлической трубой малого диаметра. Второй особенность. Выступает то, что исследователи анализируют буквально каждый метр горных пород, что значительно осложняет процесс бурения и увеличивает его сроки.

Общие принципы процесса бурения

Процесс бурения скважин для добычи нефти или газа осуществляется специальным оборудованием. С поверхности земли – с бурового стола вышки в грунт заглубляется рабочий орган – долото. Долото насаживается на буровую штангу. Чтобы долото опускалось на нужную глубину штангу делают разборной – из нескольких секций. До определенной глубины вращательное движение долота обеспечивается вращением всей конструкции – при помощи электродвигателя приводится в движение буровые штанги и сам рабочий орган. После того как будет достигнута максимально возможная глубина вращение рабочего органа будет осуществлять двигатель, опускаемый непосредственно в скважину на штанге.

Для того чтобы шахта не обрушилась в перерывах между бурением проводят работы по укреплению стенок – опускают обсадные трубы или делают цементирование цементным раствором.

Бурение нефтяных и газовых скважин

Процесс бурения нефтяной скважины

Для облегчения процесса бурения в полость скважины под давлением закачивают воду, при этом обратно выкачивают ее с измельченными горными породами. При проведении разведывательных работ используют специальный бур, который аккуратно вырезает цилиндрической формы колонну из горных пород. После прохождения 5-10 метров разведывательной скважины штангу с долотом поднимают, а содержимое укладывают в специальные контейнеры для дальнейшего исследования.

Работы осуществляются несколькими типами рабочих органов, есть долота с твердосплавными головками, есть с подвижными, а есть с алмазными, что дают возможность проходить пласты самых твердых пород.

При работах на промышленных скважинах проводится постоянный мониторинг состояния горных пород в них оценивается наличие содержания нефти и газа. После того как будет достигнута проектная глубина осуществляется подготовка скважины к введению в эксплуатацию – делается обустройство оголовка, проводятся работы по укреплению забойной части скважины.

Нюансы бурения горизонтальных скважин

Техника бурения нефтяных и газовых скважин предусматривает бурение не только вертикальных, но и горизонтальных скважин. Особенность технологии заключается в использовании специальных видов буров и штанг, оснащённые шарнирными устройствами.

Применение метода горизонтального бурения совсем не означает, что скважина будет буриться под углом 90 градусов с конкретной точки. Просто такой технологии еще не существует, а вот постепенный поворот на заданный угол сегодня применяется часто.

Принципиально эта схема выглядит так:

Бурение нефтяных и газовых скважин

  • С определенной точки делается уход долота в сторону;
  • после этого делается наращивание угла отклонения до 5-7 градусов;
  • следующим этапом идет стабилизация направления;
  • далее опять изменение направления на 5-7 градусов.
  • Изменение направления осуществляется до тех пор, пока не будет достигнута необходимая точка.
Бурение горизонтальных скважин

При таких работах оборудование для бурения нефтяных и газовых скважин дополняется еще и специальными датчиками. Они следят за пространственным положением бура и передают данные для управления долотом.

Таким методом обычно обходят сверхтрудные участки горных пород и участки перспективных скважин, на которых из-за обрушения стенок возникли проблемы с проходкой. Сама технология дает возможность с одной площадки получить в распоряжение целый район разведанного или промышленного месторождения.

Особенности бурения скважин в море

Развитие газо- и нефтедобычи на суше очень часто становиться нерентабельным из-за высокой стоимости строительства объектов инфраструктуры. Газопроводы, дороги, доставка грузов и транспортировка оборудования делают нерентабельными вложения в разведку и освоение. Другое дело технология бурения и добычи на морском шельфе. Конечно, как показывает практика стоимость оборудования здесь выше, но освоение морского дна более выгодное за счет снижения дополнительных расходов.

Сам процесс бурения не отличается от подобного процесса на суше, за исключением того, что доставка всего оборудования осуществляется морскими судами, а платформа представляет собой плавучий остров со всеми элементами, начиная от системы электрообеспечения и заканчивая жилыми модулями для персонала. Разведывательные платформы устанавливаются на дно при помощи ферм, а после оборудования оголовка и стен скважины заменяются на стационарные, которые служат одновременно резервуарами для добытой нефти. В оборудовании платформы входит сепараторы для того чтобы отделить газовый конденсат из нефтяного сырья.

Читайте также: